Friday, October 28, 2011

About Yunny Power

Hello! My name’s Yunny Power. I’m currently a Junior at Oakland High School. The schools I attended were Bella Vista Elementary and Edna Brewer Middle School. I have attended many community services, and tutored my neighbor's kids. I'm not getting paid, but the feeling of being able to help those in need feels wonderful. I'm in Oakland High's KIWIN'S, and been a member of AYPAL for two years. When I get into college, I want to major in the Marketing or Psychology field. My hobbies are the typical things everyone else loves to do- spending time with their friends and family.

Monday, October 24, 2011

Ch 1 Real World Function


Definitions:
Relation is a set of ordered pairs.
Function is a relation for wich each element of the domain corresponds to exactly one element of the range.
The graph on the right shows the 6 flower species as the independent variables and their native habitats as the dependent variables. The domains are the flowers: plum blossom, lotus, musk rose, ixora, prim rose, foxglove; the ranges of the function are the countries: China, India, Malaysia, England. Since each of these flowers had 1 original nativity this is a function.
In the graph on the right I added the bombax ceiba flower specie, which was distributed in 3 places. The domains are now including plum blossom, lotus, musk rose, ixora, prim rose, foxglove, and bombax ceiba; the new ranges are China, India, Malaysia, England, and Australia. Since 1 of the domain had match with more than 1 range, the function failed and the graph is a relation.

Tuesday, October 18, 2011

1 How to Do Real World Functions



1. Choose a real world function
2. Describe and draw a picture for your function.
3. Describe and draw a picture when your function fails (i.e. when it is a relation not a function)
4. Include the definition of function and relation in your descriptions for 2 and 3
5. Identify the following:


Independent Variable
Dependent Variable
Domain
Range

6. Draw a graph of your function on the Cartesian Coordinate Plane

Note: see An Example Student for an example of how to do this project.

Monday, October 10, 2011


Ch0 Graphing Functions by Tam Equation


For the Ch.0 Graphing Functions. I'll show the 


different transformation of a function.


_The original Function is y = x^3 


_The Vertical Translation, the function is 


y = x^3 +2. I moved it up 2 units.


_The Horizontal Translation, the function is 


y = (x+2)^3. I moved it 2 units to the left.


_The Reflection, the function is -x^3. I just flipped


the original across the y-axis. 

_The Vertical + Horizontal, the function is 


y = (x+2)^3 -3. I moved it 3 units to the left and 


down 3 units. 

_The Translation + Reflection, the function is
y = -(x+2)^3 +3. I moved it 2 units to the left and 


up 3 units.





Chapter O Graphing Functions by Clinton Medium




In Chapter 0 we learned about transforming parent functions. The original equation was y=|x|. The vertical translation of y=|x|+2 is moved up by 2. The horizontal translation of y=|x-2| is moved to the right by 2. The reflection of y=-|x| is reflected across the x axis. The combination of Vertical land Horizontal of y=|x+3|+1 is moved up by 1 and to the left by 3. The vertical stretch of y=|2x| is stretched by 2.